资源类型

期刊论文 86

年份

2023 5

2022 3

2021 10

2020 4

2019 7

2018 4

2017 5

2016 3

2015 3

2014 4

2013 4

2012 3

2011 6

2010 3

2009 5

2008 7

2007 4

2006 3

2005 2

1999 1

展开 ︾

关键词

增材制造 3

煤层气 3

固定床 2

循环流化床 2

污染控制 2

H2S 1

Inconel 718合金 1

P4 1

PH3 1

Rosenthal方程 1

传热强化 1

催化剂 1

催化氧化 1

冲刷 1

力学性能 1

动床模型 1

压缩-扭转性能 1

压缩诱导扭转柔顺机构 1

吸附 1

展开 ︾

检索范围:

排序: 展示方式:

gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate in the rotating packedbed

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 460-469 doi: 10.1007/s11705-022-2224-5

摘要: Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment. Advanced persulfate oxidation technology is a workable and effective choice for wet flue gas denitrification due to its high efficiency and green advantages. However, NO absorption rate is limited and affected by mass transfer limitation of NO and aqueous persulfate in traditional reactors. In this study, a rotating packed bed (RPB) was employed as a gas–liquid absorption device to elevate the NO removal efficiency (ηNO) by aqueous persulfate ((NH4)2S2O8) activated by ferrous ethylenediaminetetraacetate (Fe2+-EDTA). The experimental results regarding the NO absorption were obtained by investigating the effect of various operating parameters on the removal efficiency of NO in RPB. Increasing the concentration of (NH4)2S2O8 and liquid–gas ratio could promoted the oxidation and absorption of NO while the ηNO decreased with the increase of the gas flow and NO concentration. In addition, improving the high gravity factor increased the ηNO and the total volumetric mass transfer coefficient (KGα) which raise the ηNO up to more than 75% under the investigated system. These observations proved that the RPB can enhance the gas–liquid mass transfer process in NO absorption. The correlation formula between KGα and the influencing factors was determined by regression calculation, which is used to guide the industrial scale-up application of the system in NO removal. The presence of O2 also had a negative effect on the NO removal process and through electron spin resonance spectrometer detection and product analysis, it was revealed that Fe2+-EDTA activated (NH4)2S2O8 to produce •SO4, •OH and •O2, played a leading role in the oxidation of NO, to produce NO3 as the final product. The obtained results demonstrated a good applicable potential of RPB/PS/Fe2+-EDTA in the removal of NO from flue gases.

关键词: rotating packed bed     Fe2+-EDTA     sulfate radical     hydroxyl radical     NO removal efficiency    

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 513-528 doi: 10.1007/s11708-019-0638-7

摘要: It is difficult to accurately measure the temperature of the falling particle receiver since thermocouples may directly be exposed to the solar flux. This study analyzes the thermal performance of a packed bed receiver using large metal spheres to minimize the measurement error of particle temperature with the sphere temperature reaching more than 700°C in experiments in a solar furnace and a solar simulator. The numerical models of a single sphere and multiple spheres are verified by the experiments. The multiple spheres model includes calculations of the external incidence, view factors, and heat transfer. The effects of parameters on the temperature variations of the spheres, the transient thermal efficiency, and the temperature uniformity are investigated, such as the ambient temperature, particle thermal conductivity, energy flux, sphere diameter, and sphere emissivity. When the convection is not considered, the results show that the sphere emissivity has a significant influence on the transient thermal efficiency and that the temperature uniformity is strongly affected by the energy flux, sphere diameter, and sphere emissivity. As the emissivity increases from 0.5 to 0.9, the transient thermal efficiency and the average temperature variance increase from 53.5% to 75.7% and from 14.3% to 27.1% at 3.9 min, respectively. The average temperature variance decreases from 29.7% to 9.3% at 2.2 min with the sphere diameter increasing from 28.57 mm to 50 mm. As the dimensionless energy flux increases from 0.8 to 1.2, the average temperature variance increases from 13.4% to 26.6% at 3.4 min.

关键词: packed bed     solar thermal power plants     high heat fluxes     radiative heat transfer    

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-018-1017-z

摘要: In this study, post plasma-catalysis degradation of mixed volatile organic compounds (benzene, toluene, and xylene) has been performed in a hybrid surface/packed-bed discharge plasma reactor with Ag-Ce/ g-Al O catalyst at room temperature. The effect of relative air humidity on mixed VOCs degradation has also been investigated in both plasma-only and PPC systems. In comparison to the plasma-only system, a significant improvement can be observed in the degradation performance of mixed VOCs in PPC system with Ag-Ce/ g-Al O catalyst. In PPC system, 68% benzene, 89% toluene, and 94% xylene were degraded at 800 J·L , respectively, which were 25%, 11%, and 9% higher than those in plasma-only system. This result can be attributed to the high catalytic activity of Ag-Ce/ g-Al O catalyst to effectively decompose O and lead to generating more reactive species which are capable of destructing the VOCs molecules completely. Moreover, the presence of Ag-Ce/ g-Al O catalyst in plasma significantly decreased the emission of discharge byproducts (NO and O ) and promoted the mineralization of mixed VOCs towards CO . Adding a small amount of water vapor into PPC system enhanced the degradation efficiencies of mixed VOCs, however, further increasing water vapor had a negative impact on the degradation efficiencies, which was primarily attributed to the quenching of energetic electrons by water vapor in plasma and the competitive adsorption of water vapor on the catalyst surface. Meanwhile, the catalysts before and after discharge were characterized by the Brunauer-Emment-Teller and X-ray photoelectron spectroscopy.

关键词: Mixed VOCs     HSPBD plasma reactor     Degradation     Catalyst     Relative humidity    

堆积床相变储热系统中径向孔隙率振荡分布对热性能的影响 Article

刘红兵, 赵长颖

《工程(英文)》 2021年 第7卷 第4期   页码 515-525 doi: 10.1016/j.eng.2020.05.020

摘要:

由于具有较高的储热能力和传热速率,堆积床相变储热被认为是一种很有潜力的储热方法。在堆积床中,壁面效应会影响相变胶囊的填充结构,从而引起径向孔隙率的振荡。本研究建立了一个基于球体实际堆积过程的三维堆积床相变储热模型,以描述径向孔隙率的振荡分布,并分析了其内部的流动和传热情况。通过在堆积床中沿径向不同位置截取圆柱面,揭示了相变胶囊的排列与径向孔隙率之间的对应关系。径向孔隙率的振荡分布导致换热流体速度呈不均匀分布,因此相变材料的径向温度分布和液相分数分布进一步受到影响。此外,本文讨论了不同的无量纲参数(如管与胶囊的直径比、雷诺数和史蒂芬数)对换热流体和相变材料径向特性的影响。结果表明,不同的直径比对应于不同的径向孔隙率分布。此外,随着直径比的增加,在壁面附近区域换热流体速度显著变化,而中心区域换热流体速度的不均匀性将减小。雷诺数和史蒂芬数对换热流体的相对速度分布有轻微影响,而更高的雷诺数可导致速度成比例地提高,史蒂芬数的增加可加快堆积床相变储热系统的储热过程。

关键词: 堆积床相变储热     径向孔隙率振荡     流动换热     传热强化     直径比    

High-gravity intensified iron-carbon micro-electrolysis for degradation of dinitrotoluene

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1595-1605 doi: 10.1007/s11705-022-2204-9

摘要: The application of iron–carbon (Fe–C) micro-electrolysis to wastewater treatment is limited by the passivation potential of the Fe–C packing. In order to address this problem, high-gravity intensified Fe–C micro-electrolysis was proposed in this study for degradation of dinitrotoluene wastewater in a rotating packed bed (RPB) using commercial Fe–C particles as the packing. The effects of reaction time, high-gravity factor, liquid flow rate and initial solution pH were investigated. The degradation intermediates were determined by gas chromatography-mass spectrometry, and the possible degradation pathways of nitro compounds by Fe–C micro-electrolysis in RPB were also proposed. It is found that under optimal conditions, the removal rate of nitro compounds reaches 68.4% at 100 min. The removal rate is maintained at approximately 68% after 4 cycles in RPB, but it is decreased substantially from 57.9% to 36.8% in a stirred tank reactor. This is because RPB can increase the specific surface area and the renewal of the liquid–solid interface, and as a result the degradation efficiency of Fe–C micro-electrolysis is improved and the active sites on the Fe–C surface can be regenerated for continuous use. In conclusion, high-gravity intensified Fe–C micro-electrolysis can weaken the passivation of Fe–C particles and extend their service life.

关键词: high-gravity technology     rotating packed bed     Fe–C micro-electrolysis     dinitrotoluene wastewater     active sites    

Preparation of transparent BaSO

Le Fang, Qian Sun, Yong-Hong Duan, Jing Zhai, Dan Wang, Jie-Xin Wang

《化学科学与工程前沿(英文)》 2021年 第15卷 第4期   页码 902-912 doi: 10.1007/s11705-020-1985-y

摘要: BaSO nanoparticles as important functional materials have attracted considerable research interests, due to their X-rays barrier and absorption properties. However, most of BaSO nanoparticles prepared by traditional technology are nanopowders with broad size distribution and poor dispersibility, which may greatly limit their applications. To the best of our knowledge, the synthesis of transparent BaSO nanodispersions was rarely reported. Here, we firstly present a novel and efficient method to prepare transparent and stable BaSO nanodispersions with a relatively small particle size around 10 to 17 nm using a precipitation method in a rotating packed bed (RPB), followed by a modification treatment using stearic acid. Compared with the BaSO prepared in a traditional stirred tank, the product prepared using an RPB has much smaller particle size and narrower size distribution. More importantly, by using RPB, the reaction time can be significantly decreased from 20 min to 18 s. Furthermore, the transparent BaSO -polyvinyl butyral nanocomposite films with good X-ray shielding performance can be easily fabricated. We believe that the stable BaSO nanodispersions may have a wide range of applications for transparent composite materials and coatings with X-ray shielding performance for future research.

关键词: BaSO4 nanoparticles     rotating packed bed     transparent nanodispersions     BaSO4-PVB films     X-ray shielding    

Simultaneous CO

Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1117-1129 doi: 10.1007/s11783-015-0812-z

摘要: The chemical looping concept provided a novel way to achieve carbon separation during the production of energy or substances. In this work, hydrogen generation with inherent CO capture in single packed bed reactor via this concept was discussed. Two oxygen carriers, Fe O 60 wt.% and Fe O 55 wt.%/CuO 5 wt.% supported by Al O , were made by ball milling method. First, according to the characteristics of the reduction breakthrough curve, a strict fuel supply strategy was selected to achieve simultaneous CO capture and H production. Then, in the long term tests using CO as fuel, it was proved that CuO addition improved hydrogen generation with the maximum intensity of 3700 μmol H ·g Fe O compared with Fe-Al of 2300 μmol H ·g Fe O . The overall CO capture efficiency remained 98%–98.8% over 100 cycles. Moreover, the reactivity of deactivated materials was recovered nearly like that of fresh ones by sintering treatment. Finally, two kinds of complex gases consist of CO, H , CH and CO were utilized as fuels to test the feasibility. The results showed all components could be completely converted by Fe-Cu-Al in the reduction stage. The intensity of hydrogen production and the overall CO capture efficiency were in the range of 2000–2400 μmol H ·g Fe O and 89%–95%, respectively.

关键词: CO2 capture     chemical looping hydrogen generation     iron based oxygen carriers     single packed bed reactor     long-term test     complex gases fuel    

Factors affecting production of nonaqueous peracetic acid in tubular packed reactors

ZHANG Tengyun, FAN Hongbo, ZHONG Li, CHUANG Karl

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 196-203 doi: 10.1007/s11705-008-0037-9

摘要: The synthesis of nonaqueous peracetic acid in acetone by acetaldehyde oxidation was carried out in a tubular packed reactor. The influencing factors of the reacting system including packing material, oxygen carrier, and reactor configuration were investigated. The results show that porous materials are inappropriate for peracetic acid synthesis and only non porous material with appropriate surface area can provide good peracetic acid selectivity and yield. Among the six kinds of packing material investigated, SA-5118 is the best one. As oxidizing gas, pure oxygen is superior to air. The optimum length-to-inner diameter ratio of the reactor is about 40. Under the proper reaction conditions, the highest peracetic acid yield of 84.15% and the highest selectivity of 93.34% can be achieved which indicates that the novel reacting system is effective and economical for nonaqueous peracetic acid production.

Protein adsorption in two-dimensional electrochromatography packed with superporous and microporous cellulose

Dongmei WANG, Guodong JIA, Liang XU, Xiaoyan DONG, Yan SUN

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 229-234 doi: 10.1007/s11705-009-0213-6

摘要: Anion-exchange superporous cellulose (DEAE-SC) and microporous cellulose (DEAE-MC) adsorbents were packed in an electrochromatographic column, and the effect of external electric field (eEF) on the dynamic adsorption was investigated. The column was designed to provide longitudinal, transverse or 2-dimensional (2D) eEF. It was found that the electro-kinetic effect caused by the introduction of an electric field played an important role in the dynamic adsorption of bovine serum albumin to the adsorbents. The dynamic binding capacity (DBC) in the presence of 2D eEF was higher than in the presence of a one-dimensional eEF. The effect of flow velocity on the DBC of the two adsorbents was also demonstrated. It was found that the effect of electric field on the DEAE-MC column was more remarkable than that on the DEAE-SC column at the same flow rate, whereas the DEAE-SC column showed higher DBC and adsorption efficiency (AE) than the DEAE-MC column. With increasing flow rate, the DEAE-SC column could still offer high DBC and AE in the presence of the 2D eEF. For example, a DBC of 21.4 mg/mL and an AE of 57.7% were obtained even at a flow rate as high as 900 cm/h. The results indicate that the 2D electrochromatography packed with the superporous cellulose adsorbent is promising for high-speed protein chromatography.

关键词: electrochromatography     two-dimensional electric field     dynamic binding capacity     superporous cellulose bead     protein    

Prediction of bed load sediments using different artificial neural network models

Reza ASHEGHI, Seyed Abbas HOSSEINI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 374-386 doi: 10.1007/s11709-019-0600-0

摘要: Modeling and prediction of bed loads is an important but difficult issue in river engineering. The introduced empirical equations due to restricted applicability even in similar conditions provide different accuracies with each other and measured data. In this paper, three different artificial neural networks (ANNs) including multilayer percepterons, radial based function (RBF), and generalized feed forward neural network using five dominant parameters of bed load transport formulas for the Main Fork Red River in Idaho-USA were developed. The optimum models were found through 102 data sets of flow discharge, flow velocity, water surface slopes, flow depth, and mean grain size. The deficiency of empirical equations for this river by conducted comparison between measured and predicted values was approved where the ANN models presented more consistence and closer estimation to observed data. The coefficient of determination between measured and predicted values for empirical equations varied from 0.10 to 0.21 against the 0.93 to 0.98 in ANN models. The accuracy performance of all models was evaluated and interpreted using different statistical error criteria, analytical graphs and confusion matrixes. Although the ANN models predicted compatible outputs but the RBF with 79% correct classification rate corresponding to 0.191 network error was outperform than others.

关键词: bed load prediction     artificial neural network     modeling     empirical equations    

Liquefaction and impurity separation of oxygen-bearing coal-bed methane

Qiuying LI, Yonglin JU, Li WANG,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 319-325 doi: 10.1007/s11708-010-0115-9

摘要: Coal-bed methane (CBM) is a type of clean energy. However, most oxygen-bearing CBM have not yet to be utilized due to limited techniques, and when utilized, the discharged gas leads to resource wastage and environment pollution. In this paper, a liquefaction process is proposed and designed for the specified oxygen-bearing CBM obtained from the Daqing Qingshen gas field. The distillation column is employed to separate the oxygen and nitrogen components present in the CBM. HYSYS software is adopted to simulate the process, and the results reveal that the energy consumption of the whole liquefaction process is low. Moreover, oxygen and nitrogen are nearly removed completely, achieving a high-purity liquefied natural gas product with a high methane recovery rate. The applicability and safety of the liquefaction process are also analyzed. The simulation results can offer references for the separation of the oxygen component from CBM.

关键词: coal bed methane     oxygen-bearing     liquefaction     distillation    

Advances in polishing of internal structures on parts made by laser-based powder bed fusion

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0724-0

摘要: The internal structures of metallic products are important in realizing functional applications. Considering the manufacturing of inner structures, laser-based powder bed fusion (L-PBF) is an attractive approach because its layering principle enables the fabrication of parts with customized interior structures. However, the inferior surface quality of L-PBF components hinders its productization progress seriously. In this article, process, basic forms, and applications relevant to L-PBF internal structures are reviewed comprehensively. The causes of poor surface quality and differences in the microstructure and property of the surface features of L-PBF inner structures are presented to provide a perspective of their surface characteristics. Various polishing technologies for L-PBF components with inner structures are presented, whereas their strengths and weaknesses are summarized along with a discussion on the challenges and prospects for improving the interior surface quality of L-PBF parts.

关键词: laser-based powder bed fusion     polishing     internal structures     surface quality     surface features     post process     additive manufacturing    

Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler

Junfu LYU, Hairui YANG, Wen LING, Li NIE, Guangxi YUE, Ruixin LI, Ying CHEN, Shilong WANG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 114-119 doi: 10.1007/s11708-017-0512-4

摘要: The supercritical circulating fluidized bed (CFB) boiler, which combines the advantages of CFB combustion with low cost emission control and supercritical steam cycle with high efficiency of coal energy, is believed to be the future of CFB combustion technology. It is also of greatest importance for low rank coal utilization in China. Different from the supercritical pulverized coal boiler that has been developed more than 50 years, the supercritical CFB boiler is still a new one which requires further investigation. Without any precedentor engineering reference, Chinese researchers have conducted fundamental research, development, design of the supercritical CFB boilers independently. The design theory and key technology for supercritical CFB boiler were proposed. Key components and novel structures were invented. The first 600 MWe supercritical CFB boiler and its auxiliaries were successfully developed and demonstrated in Baima Power Plant, Shenhua Group as well as the simulator, control technology, installation technology, commissioning technology, system integration and operation technology. Compared with the 460 MWe supercritical CFB in Poland, developed in the same period and the only other supercritical one of commercial running in the word beside Baima, the 600 MWe one in Baima has a better performance. Besides, supercritical CFB boilers of 350 MWe have been developed and widely commercialized in China. In this paper, the updated progress of 660 MWe ultra-supercritical CFB boilers under development is introduced.

关键词: supercritical     circulating fluidized bed boiler     development     demonstration    

Effects of carrier-attached biofilm on oxygen transfer efficiency in a moving bed biofilm reactor

Yanling WEI,Xunfei YIN,Lu QI,Hongchen WANG,Yiwei GONG,Yaqian LUO

《环境科学与工程前沿(英文)》 2016年 第10卷 第3期   页码 569-577 doi: 10.1007/s11783-015-0822-x

摘要: Three laboratory-scale moving bed biofilm reactors (MBBR) with different carrier filling ratios ranging from 40% to 60% were used to study the effects of carrier-attached biofilm on oxygen transfer efficiency. In this study, we evaluated the performance of three MBBRs in degrading chemical oxygen demand and ammonia. The three reactors removed more than 95% of -N at an air flow-rate of 60 L·h . The standard oxygen transfer efficiency (αSOTE) of the three reactors was also investigated at air flow-rates ranging from 60 to 100 L·h . These results were compared to αSOTE of wastewater with a clean carrier (no biofilm attached). Results showed that under these process conditions, αSOTE decreased by approximately 70% as compared to αSOTE of wastewater at a different carrier-filling ratio. This indicated that the biofilm attached to the carrier had a negative effect on αSOTE. Mechanism analysis showed that the main inhibiting effects were related to biofilm flocculants and soluble microbial product (SMP). Biofilm flocs could decrease αSOTE by about 20%, and SMP could decrease αSOTE by 30%–50%.

关键词: carrier     biofilm     oxygen transfer efficiency     moving bed biofilm reactor    

Concept and application of anaerobic suspended granular sludge bed (SGSB) reactor for wastewater treatment

Mingxia ZHENG,Zhong YAN,Jiane ZUO,Kaijun WANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 797-804 doi: 10.1007/s11783-013-0597-x

摘要: Bed expansion serves an important function in the design and operation of an upflow anaerobic reactor. An analysis of the flow pattern of expanded granular sludge bed (EGSB) reactors shows that most EGSB reactors do not behave as expanded bed reactors, as is widely perceived. Rather, these reactors behave as fluidized bed reactors based on the classic chemical reactor theory. In this paper, four bed expansion modes, divided as static bed, expanded bed, suspended bed, and fluidized bed, for bioreactors are proposed. A high-rate anaerobic suspended granular sludge bed (SGSB) reactor was then developed. The SGSB reactor is an upflow anaerobic reactor, and its expansion degree can be easily controlled within a range to maintain the suspended status of the sludge bed by controlling upflow velocity. The results of the full-scale reactor confirmed that the use of SGSB reactors is advantageous. The full-scale SGSB reactor runs stably and achieves high COD removal efficiency (about 90%) at high loading rates (average 40 kg-COD·m ·d , maximum to 52 kg-COD·m ·d ) based on the SGSB theory, and its expansion degree is between 22% and 37%.

关键词: expansion characteristic     high-rate bioreactor     anaerobic suspended granular sludge bed     expanded granular sludge bed reactor    

标题 作者 时间 类型 操作

gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate in the rotating packedbed

期刊论文

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

期刊论文

Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma

Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu

期刊论文

堆积床相变储热系统中径向孔隙率振荡分布对热性能的影响

刘红兵, 赵长颖

期刊论文

High-gravity intensified iron-carbon micro-electrolysis for degradation of dinitrotoluene

期刊论文

Preparation of transparent BaSO

Le Fang, Qian Sun, Yong-Hong Duan, Jing Zhai, Dan Wang, Jie-Xin Wang

期刊论文

Simultaneous CO

Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG

期刊论文

Factors affecting production of nonaqueous peracetic acid in tubular packed reactors

ZHANG Tengyun, FAN Hongbo, ZHONG Li, CHUANG Karl

期刊论文

Protein adsorption in two-dimensional electrochromatography packed with superporous and microporous cellulose

Dongmei WANG, Guodong JIA, Liang XU, Xiaoyan DONG, Yan SUN

期刊论文

Prediction of bed load sediments using different artificial neural network models

Reza ASHEGHI, Seyed Abbas HOSSEINI

期刊论文

Liquefaction and impurity separation of oxygen-bearing coal-bed methane

Qiuying LI, Yonglin JU, Li WANG,

期刊论文

Advances in polishing of internal structures on parts made by laser-based powder bed fusion

期刊论文

Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler

Junfu LYU, Hairui YANG, Wen LING, Li NIE, Guangxi YUE, Ruixin LI, Ying CHEN, Shilong WANG

期刊论文

Effects of carrier-attached biofilm on oxygen transfer efficiency in a moving bed biofilm reactor

Yanling WEI,Xunfei YIN,Lu QI,Hongchen WANG,Yiwei GONG,Yaqian LUO

期刊论文

Concept and application of anaerobic suspended granular sludge bed (SGSB) reactor for wastewater treatment

Mingxia ZHENG,Zhong YAN,Jiane ZUO,Kaijun WANG

期刊论文